Bohr Radius for Subordination and K-quasiconformal Harmonic Mappings
نویسندگان
چکیده
منابع مشابه
Quasiconformal Extension of Harmonic Mappings in the Plane
Let f be a sense-preserving harmonic mapping in the unit disk. We give a sufficient condition in terms of the pre-Schwarzian derivative of f to ensure that it can be extended to a quasiconformal map in the complex plane. Introduction A well-known criterion due to Becker [5] states that if a locally univalent analytic function φ in the unit disk D satisfies (1) sup z∈D ∣∣∣∣φ′′(z) φ′(z) ∣∣∣∣ (1− ...
متن کاملOn Harmonic Quasiconformal Self-mappings of the Unit Ball
It is proved that any family of harmonic K-quasiconformal mappings {u = P [f ], u(0) = 0} of the unit ball onto itself is a uniformly Lipschitz family providing that f ∈ C. Moreover, the Lipschitz constant tends to 1 as K → 1.
متن کاملThe Bohr Radius Of
We show that the Bohr radius of the polydisk D behaves asymptotically as √ (logn)/n. Our argument is based on a new interpolative approach to the Bohnenblust–Hille inequalities which allows us to prove, among other results, that the polynomial Bohnenblust–Hille inequality is subexponential.
متن کاملConvex functions and quasiconformal mappings
Continuing our investigation of quasiconformal mappings with convex potentials, we obtain a new characterization of quasiuniformly convex functions and improve our earlier results on the existence of quasiconformal mappings with prescribed sets of singularities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society
سال: 2019
ISSN: 0126-6705,2180-4206
DOI: 10.1007/s40840-019-00795-9